Butyrate Increases Intracellular Calcium Levels and Enhances Growth Hormone Release from Rat Anterior Pituitary Cells via the G-Protein-Coupled Receptors GPR41 and 43
نویسندگان
چکیده
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
منابع مشابه
Glucocorticoids rapidly inhibit oxytocin-stimulated adrenocorticotropin release from rat anterior pituitary cells, without modifying intracellular calcium transients.
Glucocorticoid hormones suppress the secretion of ACTH evoked by secretagogues such as CRF and arginine vasopressin. In this study, we investigated the effects of glucocorticoids on ACTH release induced by oxytocin (OT) and on intracellular free calcium ion levels in corticotropes prepared from the adenohypophyses of female Wistar rats. Pulsatile additions of physiological concentration of OT (...
متن کاملPituitary cell type-specific electrical activity, calcium signaling and secretion.
All secretory anterior pituitary cells exhibit spontaneous and extracellular calcium-dependent electrical activity, but differ with respect to the patterns of firing and associated calcium signaling and hormone secretion. Thus, somatotrophs and lactotrophs fire plateau-bursting action potentials spontaneously and without coupling to calcium release from intracellular stores, which generate calc...
متن کاملHigh glucose condition down-regulates the inhibitory G-protein subunit, Gαi, in pheochromocytoma PC12 cells
Introduction: G-proteins have an important role in the cell signaling of numerous receptors. The situation of G-proteins in health and disease and their critical role in the development of diabetic side effects is an interested scientific field. Here, the changes in the expression of G-protein subunits (Gαi, Gαs and Gβ) were evaluated in hyperglycemic situation of PC12 cells as...
متن کاملMolecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors.
GH release is thought to occur under the reciprocal regulation of two hypothalamic peptides, GH releasing hormone (GHRH) and somatostatin, via their engagement with specific cell surface receptors on the anterior pituitary somatotroph. In addition, GH-releasing peptides, such as GHRP-6 and the nonpeptide mimetics, L-692,429 and MK-0677, stimulate GH release through their activation of a distinc...
متن کاملThe Rat Growth Hormone-Releasing Hormone Receptor Gene: Structure, Regulation, and Generation of Receptor Isoforms with Different Signaling Properties1.
The interaction of GHRH with membrane-bound receptors on somatotroph cells of the anterior pituitary is an important step in the regulation of GH synthesis and secretion. The identification of a G protein-coupled receptor for GHRH has made it possible to investigate the pathway by which GHRH regulates pituitary somatotroph cell function. To initiate an analysis of the mechanisms regulating expr...
متن کامل